Precise Measurement of α_K and α_T for the 39.8-keV E3 Transition in ¹⁰³Rh to Test Internal Conversion Theory

Xavier James University of Wisconsin-La Crosse Mentors: Dr. Ninel Nica & Dr. John C. Hardy

Internal Conversion Theory

 A nuclear decay process due to the electromagnetic interaction wherein an excited nucleus decays by ejecting an electron from the atom.

Experimental Setup

• Sample of Ruthenium metal was deposited onto a Cu backing.

• Sample was activated at the TAMU TRIGA Reactor. (left)

• High Purity Germanium (HPGe) detector has been calibrated for efficiency to a precision of about $\pm 0.15\%$ relative uncertainty. (right)

Internal Conversion Coefficient (ICC)

- The ratio of the emitted electrons to γ-rays for an electromagnetic transition during the decay of a nucleus.
- $\circ \alpha_T = \alpha_K + \alpha_L + \alpha_M + \dots$
- Due to the difficulty of measuring electrons, we measured the number of x-rays that are emitted instead.
- $\omega_k = K$ -shell fluorescence yield, or the probability of emitting K x-rays after K-shell ionization.

Basic Formulas

•
$$\alpha_K \equiv \frac{I_{ek}}{I_{\gamma}}$$

• $\alpha_K = \frac{1}{\omega_k} \times \frac{I_{kx}}{I_{\gamma}}$

Experimental formula
used to determine
$$\alpha_{K}$$
:
$$\alpha_{K} = \frac{1}{\omega_{k}} \times \frac{A_{kx}}{\varepsilon_{kx}} \times \frac{\varepsilon_{\gamma}}{A_{\gamma}}$$

• $\frac{A_{\gamma}}{\varepsilon_{\gamma}} = I_{\gamma}$ – Intensity of the gamma-ray • $\omega_k \times I_{ek} = I_{kx}$ - Intensity of the K x-ray • ε_{γ} - Photopeak detector efficiency

Basic Formulas cont'd

Motivation

- Measure ICCs to a high precision and investigate the accuracy of the theoretical calculations that either include or exclude the atomic vacancy.
- Previous measurements with heavier nuclei demonstrated that the atomic vacancy must be taken into account.
- Gain a better understanding of α_K values used in science and their applications to balance intensities in decay-schemes, assign multipolarities, spins, etc.

Method 1: MAESTRO-32

Figure 1: Energy spectrum of RuCu4 using an HPGe detector

Impurity Analysis

Impurity Analysis cont'd

Isotope	T1/2
¹⁰³ Ru	39.2 d
97Ru	2.83 d
^{97m} Tc	91.0 d
96TC	4.28 d
60C0	1925.28 d
⁶⁵ Zn	243.93 d
110mAg	249.76 d
134Cs	2.07 y
¹⁸² Ta	114.74 d
185OS	93.6 d
¹⁹¹ Os	15.4 d
¹⁹² r	73.8 d

Nuclear Data Search Database

Gammas from ¹⁰³ Ru (39.26 d 2)			
Eγ (keV)	Ιγ (%)	Decay mode	
497.080 7	90.9 10	β-	
610.33 20	5.75 5	β-	
443.799 19	3.27 9	β-	
557.039 20	0.8672 <i>9</i>	β-	
53.285 7	0.443 10	β-	
294.978 20	0.303 5	β-	
612.02 3	0.107 <i>3</i>	β-	
39.757 <i>6</i>	0.089 8	β-	
317.77 22	0.019 <i>9</i>	β-	
241.88 4	0.0180 13	β-	
514.46 19	0.0114 15	β-	
357.47 5	0.0094 <i>б</i>	β-	
114.970 20	0.0074 5	β-	
651.8 4	0.0069 23	β-	
292.70 20	0.0057 <i>3</i>	β-	
42.63 4	0.0052 ó	β-	
113.25 7	0.0035 7	β-	
567.87 13	0.00282 9	β-	
317.72 5	0.00006	β-	
62.41 3	0(calc)	β-	

X-rays from ¹⁰³ Ru (39.26 d 2		
I (%)	Assignmer	
0.106 21	Rh L _l	
0.063 11	Rh L _n	
0.28 5	Rh $L_{\alpha 2}$	
2.5 5	$Rh L_{\alpha 1}$	
1.6 3	Rh L _{β1}	
0.0084 22	Rh L _{β4}	
0.013 3	Rh L _{β3}	
0.017 3	Rh L _{β6}	
0.26 5	Rh L _{β2}	
0.15 3	Rh L _{y1}	
0.0015 4	Rh $L_{\gamma 2}$	
0.0026 7	Rh L _{y3}	
9.99E-05 9	Rh K _{a3}	
3.1 3	$Rh K_{\alpha 2}$	
5.9 5	$Rh K_{\alpha 1}$	
0.49 4	Rh K _{β3}	
0.94 8	Rh K _{β1}	
0.0059 ố	Rh K _{β5}	
0.226 20	$Rh K_{\beta 2}$	
0.043 4	Rh K _{β4}	
	from 103 Ru 1 (%) 0.106 21 0.063 11 0.28 5 2.5 5 1.6 3 0.0084 22 0.013 3 0.017 3 0.26 5 0.15 3 0.0015 4 0.0026 7 9.99E-05 9 3.1 3 5.9 5 0.49 4 0.0059 6 0.226 20 0.043 4	

Nuclear Data Search Database cont'd

			-	
Energy: 310	5.5	± 0.3	keV	Search
	Туре:	O Alpha	Gamma	
		Parent	t:	
T1/2:	12	d -		s -
	Mass num	ber:		
	Z:	or Elem	nent:	
		N:		

ToRI

WWW Table of Radioactive Isotopes

Gamma energy search

Ig (%)	Decay mode	TT 10110	
	Decay mode	Half life	Parent
0.00248 10	b-	44.6 d <i>3</i>	^{115m} Cd
0.0021 13	e+b ⁺	13.537 у б	¹⁵² Eu
0.0000132 4	a	24110 y <i>30</i>	²³⁹ Pu
82.81 <i>21</i>	b-	73.831 d 8	¹⁹² Ir
<5.00E-08	a	432.2 y 7	²⁴¹ Am
0.16 3	e+b+	17.4 d 5	²³⁰ Pa
	0.00248 <i>10</i> 0.0021 <i>13</i> 0.0000132 <i>4</i> 82.81 <i>21</i> <5.00E-08 0.16 <i>3</i>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$0.00248 \ 10$ $b^ 44.6 \ d \ 3$ $0.0021 \ 13$ $e+b^+$ $13.537 \ y \ 6$ $0.0000132 \ 4$ a $24110 \ y \ 30$ $82.81 \ 21$ $b^ 73.831 \ d \ 8$ $<5.00E-08$ a $432.2 \ y \ 7$ $0.16 \ 3$ $e+b^+$ $17.4 \ d \ 5$

Eg between 316.2 and 316.8 keV; T_{1/2}(parent) ≥ 12 d;

Main page | Radiation search | Nuclide search

Gammas from ¹⁹² lr (73.831 d <i>8</i>)		
Eg (keV)	Ig (%)	Decay mode
316.50791 13	82.81 21	b-
468.07152 24	47.83 17	b-
308.45692 13	30.00 8	b-
295.95827 12	28.67 9	b-
604.41464 <i>21</i>	8.23 6	b-
612.46564 20	5.309 17	b -
588.5845 7	4.515 14	b-
205.79549 6	3.300 17	e+b+
484.5780 <i>4</i>	3.184 <i>11</i>	e+b+
374.4852 8	0.721 5	e+b+
416.4714 8	0.664 7	b-
201.3112 7	0.472 <i>6</i>	e+b+
489.039 <i>13</i>	0.443 4	e+b+
884.5418 <i>8</i>	0.2923 25	b
283.2668 8	0.262 4	e+b+
136.34348 25	0.183 8	b-
314.8 <i>3</i>	<0.07	b
314.8 <i>3</i>	<0.07	e+b+
420.532 10	0.0737 25	e+b ⁺
1061.48 4	0.0528 8	b-
593.37 <i>5</i>	0.0426 15	b-
280.04 5	0.023 11	b-
329.312 <i>9</i>	0.0185 11	e+b+
110.093 <i>19</i>	0.0126 9	e+b ⁺
415.4 5	<0.009	b-
415.4 5	<0.009	e+b ⁺
703.98 12	0.0053 <i>9</i>	e+b+
176.98 4	0.0043 12	b⁻
599.35 10	0.0039 17	b⁻
214.7 5	< 0.0026	b-

Method 2: gf3

Figure 2: Identifying the area of the 557.1 γ-ray in the energy spectra of RuCu4

Results

Value for 39.8-keV

	α _K	ατ
Experimental:	142.7 (26)	1452 (25)
Theoretical:		
Vacancy	135.3 (1)	1404 (1)
No vacancy	127.5 (1)	1388 (2)

Outlook

In comparison to the theoretical calculations, our preliminary result, although not in exact agreement with either theoretical calculation, is much closer to the hole "frozen orbital" limit but is in greater disagreement with the "no hole" limit in accordance with the previous results. It is probable that the slight discrepancy is caused by small amount of M4 mixing in the E3 transition.

Acknowledgments

I want to thank Dr. Ninel Nica, Dr. John C. Hardy, and Dr. Hyo-In Park for aiding and guiding me in my research. Also, I thank Texas A&M University Cyclotron Institute for the chance to partake in the summer REU program and further my research experience. Lastly, I want to acknowledge the NSF grant PHY-1659847.

References

J.C. Hardy, et al, Appl.Radiat.Isot. 134, 406 (2018), Precise test of internal-conversion theory: α_k measurements for transitions in nine nuclei spanning $45 \le Z \le 78$

N.Nica, et al, Phys.Rev. C 95, 064301 (2017), Precise measurement of α_k and α_T for the 109.3-keV M4 transition in ¹²⁵Te :Test of internal-conversion theory.

Questions?